Skorohod Equation and Reflected Backward Stochastic Differential Equations

Mingyu Xu

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, CAS.

CREST and 4th Ritsumeikan-Florence Workshop on Risk, Simulation and Related Topics 2012-3

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Pricing European option

We consider a financial market, which contains one locally riskless asset S_{t}^{0} (bond) governed by $d S_{t}^{0}=S_{t}^{0} r_{t} d t$, and n risky securities (stock) S^{i} is modeled by

$$
d S_{t}^{i}=S_{t}^{i}\left[b_{t}^{i} d t+\sum_{j=1}^{n} \sigma_{t}^{i, j} d B_{t}^{j}\right]
$$

- r is predictable, bounded and generally non-negative.
- $b=\left(b^{1}, \ldots, b^{n}\right)$ is a predictable and bounded process.
- The volatility matrix $\sigma=\left(\sigma^{i, j}\right)$ is a predictable and bounded process and the inverse matrix σ^{-1} is a bounded process.
- There exists a predictable and bounded-valued process vector θ, called a risk premium, such that

$$
b_{t}-r_{t} 1=\sigma_{t} \theta_{t}, \quad d \mathbf{P} \times d t-\text { a.s.. }
$$

Let us consider a small investor whose wealth is V_{t}. His decision $\left(\pi_{t}\right)$ is only based on the current information $\left(\mathcal{F}_{t}\right)$, i.e. $\pi=\left(\pi^{1}, \pi^{2}, \ldots, \pi^{n}\right)^{*}$ and $\pi^{0}=V-\sum_{i=1}^{n} \pi^{i}$ are predictable. We say a strategy is self-financing if $V=\sum_{i=0}^{n} \pi^{i}$ satisfies

$$
\begin{aligned}
V_{t} & =V_{0}+\int_{0}^{t} \sum_{i=0}^{n} \pi_{t}^{i} \frac{d S_{t}^{i}}{S_{t}^{i}} \\
\text { or } d V_{t} & =r_{t} V_{t} d t+\pi_{t}^{*} \sigma_{t}\left[d B_{t}+\theta_{t} d t\right]
\end{aligned}
$$

with $\int_{0}^{T}\left|\sigma_{t}^{*} \pi_{t}\right|^{2} d t<+\infty$.

Proposition 1.

Let $\xi \geq 0$ be a positive contingent claim, and in $\mathbf{L}^{2}\left(\mathcal{F}_{T}\right)$. There exists a hedging strategy (Y, π) against ξ,

$$
d Y_{t}=r_{t} Y_{t} d t+\pi_{t}^{*} \sigma_{t} \theta_{t} d t+\pi_{t}^{*} \sigma_{t} d B_{t}, Y_{T}=\xi
$$

and Y_{t} is the fair price of the contingent claim.

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Backward stochastic differential equation

Backward stochastic differential equations (BSDEs in short) were first introduced by Bisumt (1973) to study stochastic maximal principle. He considered the linear case and a special non-linear case. General non-linear were first considered by Pardoux and Peng (1990).

The solution of a BSDE is a couple of progressively measurable processes (Y, Z), which satisfies

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} g\left(s, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \tag{1}
\end{equation*}
$$

where B is a Brownian motion. When terminal condition ξ is a square integrable random variable, and coefficient g satisfies Lipschitz condition and some integrable condition, BSDE (1) admits the unique solution.

Proposition 2.

Set $g(t, y, z)=r_{s} y+\theta_{s} z+a_{s}$. Then the solution Y of $\operatorname{BSDE}(\xi, g)$ is

$$
Y_{t}=X_{t}^{-1} E\left[\xi X_{T}+\int_{t}^{T} a_{s} X_{s} d s \mid \mathcal{F}_{t}\right]
$$

where $X_{t}=\exp \left(\int_{0}^{t}\left(r_{s}-\frac{1}{2} \theta_{s}^{2}\right) d s+\int_{0}^{t} \theta_{s} d B_{s}\right)$.

Theorem 2.

Let $\left(Y^{1}, Z^{1}\right)$ (resp. $\left(Y^{2}, Z^{2}\right)$) be the solution of the BSDE associated with $\left(\xi^{1}, g^{1}\right)$ (resp. $\operatorname{BSDE}\left(\xi^{2}, g^{2}\right)$). Assume in addition the following: $\forall t \in[0, T]$,

$$
\xi^{1} \leq \xi^{2}, \quad g^{1}\left(t, Y_{t}^{1}, Z_{t}^{1}\right) \leq g^{2}\left(t, Y_{t}^{1}, Z_{t}^{1}\right)
$$

Then $Y_{t}^{1} \leq Y_{t}^{2}$, pour $t \in[0, T]$.

Reflected BSDEs with one barrier

In 1997, El Karoui, Kapoudjian, Pardoux, Peng and Quenez firstly published the paper with the notation of a solution of reflected backward stochastic differential equations(reflected BSDE in short) with a continuous barrier.
A solution for such equation associated with $\left(\xi, f, S_{t}\right)$, is a triple $\left(Y_{t}, Z_{t}, K_{t}\right)_{0 \leq t \leq T}$, which satisfies

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} d B_{s}, \tag{2}
\end{equation*}
$$

and $Y_{t} \geq S_{t}$ a.s. for any $t \leq T, B_{t}$ is a Brownian motion. $\left(K_{t}\right)$ is non decreasing continuous whose role is to push upward the process Y, in order to keep it above L. And it satisfies

$$
\begin{equation*}
\int_{0}^{T}\left(Y_{s}-S_{s}\right) d K_{s}=0, \text { Skorokhod condition. } \tag{3}
\end{equation*}
$$

Optimal stopping problem and Picard iteration

Proposition [EKPPQ]

Let (Y, Z, K) be the solution of RBSDE, then

$$
Y_{t}=e s s \sup _{\tau \in \mathcal{T}_{t}} E\left[\int_{t}^{\tau} f\left(s, Y_{s}, Z_{s}\right) d s+S_{\tau} 1_{\{\tau<T\}}+\xi 1_{\{\tau=T\}} \mid \mathcal{F}_{t}\right]
$$

where \mathcal{T}_{t} is be the set of all stopping times valued in $[t, T]$.
\diamond Existence of solution by Picard-type iterative procedure, Then prove that it is a strict contraction in an appropriated space.

Penalization method [EKPPQ]

Consider a penalized $\operatorname{BSDE}\left(Y^{n}, Z^{n}\right)$ with $n \int_{0}^{t}\left(Y_{s}^{n}-S_{s}\right)^{-} d s$
$Y_{t}^{n}=\xi+\int_{t}^{T} f\left(s, Y_{s}^{n}, Z_{s}^{n}\right) d s+n \int_{t}^{T}\left(Y_{s}^{n}-S_{s}\right)^{-} d s-\int_{t}^{T} Z_{s}^{n} d B_{s}$.
Set $K_{t}^{n}=n \int_{0}^{t}\left(Y_{s}^{n}-S_{s}\right)^{-} d s$. As $n \rightarrow \infty$, the limit of $Y^{n} \nearrow Y$ with $\sup _{0 \leq t \leq T}\left|Y_{t}\right|^{2}<\infty$.

Key Point: by Dini's theorem
$E\left(\sup _{0 \leq t \leq T}\left|\left(Y_{t}^{n}-S_{t}\right)^{-}\right|^{2}\right) \rightarrow 0$, as $n \rightarrow \infty$.
With this lemma, we get

$$
\left(Y^{n}, Z^{n}, K^{n}\right) \rightarrow(Y, Z, K) \text { in } \mathbf{S}_{\mathcal{F}}^{2}(0, T) \times \mathbf{L}_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{m}\right) \times \mathbf{S}_{\mathcal{F}}^{2}(0, T) .
$$

And the limit is the solution of reflected BSDE.

Comparison theorems for RBSDE with one barriers

Theorem 3. [General case for RBSDE's]

Let $\left(Y^{1}, Z^{1}, K^{1}\right)$ (resp. $\left(Y^{2}, Z^{2}, K^{2}\right)$) be the solution of the $\operatorname{RBSDE}\left(\xi^{1}, f^{1}, S^{1}\right)\left(\right.$ resp. $\operatorname{RBSDE}\left(\xi^{2}, f^{2}, S^{2}\right)$). Assume in addition the following: $\forall t \in[0, T]$,

$$
\xi^{1} \leq \xi^{2}, \quad f^{1}\left(t, Y_{t}^{1}, Z_{t}^{1}\right) \leq f^{2}\left(t, Y_{t}^{1}, Z_{t}^{1}\right), \quad S_{t}^{1} \leq S_{t}^{2}
$$

Then $Y_{t}^{1} \leq Y_{t}^{2}$, pour $t \in[0, T]$.
Theorem 4. [For the comparison of K]
Set $\left(Y^{i}, Z^{i}, K^{i}\right)(i=1,2)$ to be solution of the $\operatorname{RBSDE}\left(\xi^{i}, f^{i}, L\right)$. If we have,

$$
\xi^{1} \leq \xi^{2}, \quad f^{1}(t, y, z) \leq f^{2}(t, y, z)
$$

Then for $0 \leq s \leq t \leq T, Y_{t}^{1} \leq Y_{t}^{2}, K_{t}^{1}-K_{s}^{1} \geq K_{t}^{2}-K_{s}^{2}$.

Application: American option ([El Karoui et al.1997b])

Consider the problem of pricing an American contingent claim with payoff

$$
\widetilde{S}_{s}=\xi 1_{\{s=T\}}+S_{s} 1_{\{s<T\}} .
$$

Fix $t \in[0, T], \tau \in \mathcal{T}_{t}$; then there exists a unique strategy $\left(X_{s}\left(\tau, \widetilde{S}_{\tau}\right), \pi\left(\tau, \widetilde{S}_{\tau}\right)\right)$, which replicate \widetilde{S}_{τ}, i.e. for some coefficient b

$$
\begin{align*}
-d X_{s}^{\tau} & =b\left(s, X_{s}^{\tau}, \pi_{s}^{\tau}\right) d s-\left(\pi_{s}^{\tau}\right)^{*} d B_{s}, 0 \leq s \leq T \tag{4}\\
X_{\tau}^{\tau} & =\widetilde{S}_{\tau}
\end{align*}
$$

Then the price of the American contingent claim ($\left.\widetilde{S}_{s}, 0 \leq s \leq T\right)$ at time t is given by

$$
X_{t}=e s s \sup _{\tau \in \mathcal{T}_{t}} X_{t}\left(\tau, \widetilde{S}_{\tau}\right)
$$

Applying the previous results on reflected BSDE's, it follows that the price ($X_{t}, 0 \leq t \leq T$) corresponds to the unique solution of the reflected BSDE associated with (ξ, b, S), i.e. there exists $\left(\pi_{t}\right) \in \mathbf{L}_{\mathcal{F}}^{2}\left(0, T ; \mathbb{R}^{d}\right)$ and $\left(K_{t}\right) \in \mathbf{A}_{\mathcal{F}}^{2}(0, T)$, such that

$$
\begin{align*}
-d X_{t} & =b\left(s, X_{t}, \pi_{t}\right) d s+d K_{t}-\pi_{t}^{*} d B_{t} \tag{5}\\
X_{T} & =\xi \\
X_{t} \geq S_{t} & , \quad 0 \leq t \leq T, \int_{0}^{T}\left(X_{t}-S_{t}\right) d K_{t}=0
\end{align*}
$$

Furthermore, the stopping time
$D_{t}=\inf \left(t \leq s \leq T \mid X_{s}=S_{s}\right) \wedge T$ is optimal, that is

$$
X_{t}=X_{t}\left(D_{t}, \widetilde{S}_{D_{t}}\right)
$$

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Variant Reflected BSDE

Recently a new type of reflected BSDEs has been introduced by Bank and El Karoui by a variation of Skorohod's obstacle problem, which is named as variant reflected BSDE, and has been generalized by Ma and Wang. The formulation of such equation with an optional process X (as an upper barrier)

$$
Y_{t}=X_{T}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, A_{s}\right) d s-\int_{t}^{T} Z_{s} d B_{s} \text { and } Y \leq X
$$

where A is an increasing process, with $A_{0-}=-\infty$, and the flat-off condition holds $\int_{t}^{T}\left|Y_{s}-X_{s}\right| d A_{s}=0 . f$ is decreasing in A. In [Ma and Wang], it has been proved that the solution in a small-time duration, exists and is unique, under some conditions for f, X and ξ.

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Local time and reflected local time

The constrain $Y_{t} \geq S_{t}$ implies that $\xi-S_{T}$ must be non-negative, and the Skorhod condition is equivalent to
$\int_{0}^{t} 1_{\left\{Y_{s}-S_{s}=0\right\}} d K_{s}=K_{t}$, for $0 \leq t \leq T$.
Since

$$
Y_{0}=\xi+\int_{0}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+K_{T}-\int_{0}^{T} Z_{s} d B_{s}
$$

so that

$$
Y_{t}=Y_{0}-\int_{0}^{t} f\left(s, Y_{s}, Z_{s}\right) d s-K_{t}+\int_{0}^{t} Z_{s} d B_{s}
$$

and therefore the martingale part of Y is $M_{t}=\int_{0}^{t} Z_{s} d B_{s}$.

From Tanaka's formula

If X is a continuous semimartingale, then L^{X} denotes the local time of the continuous semimartingale $X-S$ at zero.

Proposition 1

Assume that $Y \geq S$ are two continuous semimartingale,

$$
\begin{equation*}
Y_{t}=Y_{0}-\int_{0}^{t} f_{s} d s-K_{t}+\int_{0}^{t} Z_{s} d B_{s} \tag{6}
\end{equation*}
$$

and $S=N+A(N$ is the martingale part of S and A is its variation part), where $\left(f_{t}\right)_{t \in[0, T]}$ is optional and $\mathbb{E} \int_{0}^{T} f_{s}^{2} d s<\infty$, such that $\int_{0}^{t} 1_{\left\{Y_{s}=S_{s}\right\}} d K_{s}=K_{t}$. Then

$$
\begin{aligned}
K_{t}=- & \int_{0}^{t} 1_{\left\{Y_{s}=S_{s}\right\}} f_{s} d s-\int_{0}^{t} 1_{\left\{Y_{s}=S_{s}\right\}} d A_{s}-L_{t}^{Y} \\
& 1_{\left\{Y_{t}=S_{t}\right\}}\left(Z_{t}-\sigma_{t}\right)=0
\end{aligned}
$$

Skorohod's equation

Theorem (The Skorohod equation (1961))

Let $z \geq 0$ be a given number and $\varphi(\cdot)=\{\varphi(t) ; 0 \leq t<\infty\}$ a continuous function with $\varphi(0)=0$. There exists a unique continuous function $l(\cdot)=\{l(t) ; 0 \leq t<\infty\}$, such that (i) $x(t):=z+\varphi(t)+l(t) \geq 0 ; 0 \leq t<\infty$,
(ii) $l(0)=0, l(\cdot)$ is nondecreasing, and
(iii) $l(\cdot)$ is flat-off $\{t \geq 0 ; x(t)=0\}$; i.e. $\int_{0}^{\infty} 1_{\{x(s)>0\}} d l(s)=0$.

This function is given by

$$
l(t)=\max \left[0, \max _{0 \leq s \leq t}\{-(z+\varphi(s))\}\right], 0 \leq t<\infty .
$$

Apply to Reflected BSDE

For $Y \geq S$, set $y_{t}=Y_{T-t}-S_{T-t}, L_{t}=K_{T}-K_{T-t}$ and

$$
x_{t}=\int_{T-t}^{T} f_{s} d s-\int_{T-t}^{T} Z_{s} d B_{s}+S_{T}-S_{T-t}
$$

Then $L_{0}=0, t \rightarrow L_{t}$ increases only on $\left\{t: y_{t}=0\right\}, y_{t} \geq 0$, $\eta=Y_{T}-S_{T} \geq 0, x_{0}=0$, and

$$
y_{t}=\eta+x_{t}+L_{t}
$$

According to Skorohod's equation,

$$
L_{t}=\max \left[0, \max _{0 \leq s \leq t}\left\{-\left(\eta+x_{s}\right)\right\}\right], \quad \forall t \geq 0 .
$$

That is for $0 \leq t \leq T$
$L_{t}=\max \left[0, \max _{T-t \leq s \leq T}\left\{-\left(Y_{T}+\int_{s}^{T} f_{r} d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right]$.
We may recover $K_{t}=L_{T}-L_{T-t}$ to obtain

$$
\begin{aligned}
K_{t}= & \max \left[0, \max _{0 \leq s \leq T}\left\{-\left(Y_{T}+\int_{s}^{T} f_{r}-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right] \\
& -\max \left[0, \max _{t \leq s \leq T}\left\{-\left(Y_{T}+\int_{s}^{T} f_{r} d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right]
\end{aligned}
$$

Reflected BSDE with resistance (joint work with Zhongmin Qian)

We study the following stochastic integral equation

$$
\begin{equation*}
Y_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}\right) d s+K_{T}-K_{t}-\int_{t}^{T} Z_{s} d B_{s} \tag{7}
\end{equation*}
$$

for $t \leq T$, subject to the constrain that

$$
\begin{equation*}
Y_{t} \geq S_{t} \text { and } \int_{0}^{T}\left(Y_{t}-S_{t}\right) d K_{t}=0 \tag{8}
\end{equation*}
$$

S is a continuous semimartingale such that $\sup _{t \leq T} S_{t}^{+}$is square integrable, and $\xi \in \mathcal{L}^{2}\left(\mathcal{F}_{T}\right)$, which are given data.

Assumption for f

$\left|f(s, y, z, k)-f\left(s, y^{\prime}, z^{\prime}, k^{\prime}\right)\right| \leq C_{1}\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right)+C_{2}\left|k-k^{\prime}\right|$ where C_{1} and C_{2} are two constants, and $\mathbb{E} \int_{0}^{T} f^{0}(t)^{2} d t<\infty$, with $f^{0}(t) \equiv f(t, 0,0,0)$.

Definition

By a solution triple (Y, Z, K) of the terminal problem (7) we mean that $Y \in \mathcal{S}^{2}(0, T), K \in \mathcal{A}^{2}(0, T)$ and K is optional, and $Z \in \mathcal{H}_{d}^{2}(0, T)$, which satisfies the stochastic integral equations (7) with time t running from 0 to T.

The integral equation (7) is not local in time, since K will be path dependent over the whole range $[0, T]$. This is the reason why we have to require the Lipschitz constant C_{2} in Assumption for f to be small.
If (Y, Z, K) is a solution of (7)-(8), then we must have

$$
\begin{aligned}
K_{t}= & \max \left[0, \max _{0 \leq s \leq T}\left\{-\left(\xi-S_{s}+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}\right) d r-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right. \\
& -\max \left[0, \max _{t \leq s \leq T}\left\{-\left(\xi-S_{s}+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}\right) d r-\int_{s}^{T} Z_{r} d B_{r}\right)\right.\right.
\end{aligned}
$$

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Constructing Picard's iteration

We construct

$$
\begin{array}{clc}
\mathcal{S}^{2}(0, T) \times \mathcal{H}_{d}^{2}(0, T) \times \mathcal{A}^{2}(0, T) & \rightarrow & \mathcal{S}^{2}(0, T) \times \mathcal{H}_{d}^{2}(0, T) \times \mathcal{A}^{2}(0, T) \\
(Y, Z, K) & \rightarrow & (\tilde{Y}, \tilde{Z}, \tilde{K})
\end{array}
$$

Here $\tilde{Z} . B$ is the martingale part of \tilde{Y}. We first define

$$
\begin{aligned}
\tilde{K}_{t}= & \max \left[0, \max _{0 \leq s \leq T}\left\{-\left(\xi+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}^{b}\right) d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right. \\
& -\max \left[0, \max _{t \leq s \leq T}\left\{-\left(\xi+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}^{b}\right) d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right.\right.
\end{aligned}
$$

where K_{r}^{b} is the optional projection of K, as we do not assume that K is optional, but we want to ensure that the arguments in the driver f are optional.

We are going to define \tilde{M} and \tilde{Y}. The natural way is

$$
\begin{equation*}
\hat{Y}_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+\tilde{K}_{T}-\tilde{K}_{t}-\int_{t}^{T} Z_{s} d B_{s} \tag{10}
\end{equation*}
$$

\hat{Y} is however not necessary adapted. Therefore we define \tilde{Y} to be its optional projection \hat{Y}^{b} :

$$
\begin{align*}
\tilde{Y}_{t} & =\mathbb{E}\left\{\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+\tilde{K}_{T}-\tilde{K}_{t}-\int_{t}^{T} Z_{s} d B_{s} \mid \mathcal{F}_{t}\right\} \\
& =\mathbb{E}\left\{\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+\tilde{K}_{T}-\tilde{K}_{t} \mid \mathcal{F}_{t}\right\} \tag{11}
\end{align*}
$$

According to Skorohod's equation, $\hat{Y} \geq S$, so is \tilde{Y}. Moreover \tilde{K} increases only on $\left\{t: \hat{Y}_{t}-S_{t}=0\right\}$, which however does not necessarily coincide with the level set $\left\{t: \tilde{Y}_{t}-S_{t}=0\right\}$.

Notice $\tilde{N}_{t}=\tilde{K}_{t}^{b}-\tilde{K}_{t}^{o}$ is a continuous martingale. Therefore the martingale part of \tilde{Y} is

$$
\tilde{M}_{t}=\mathbb{E}\left\{\xi+\tilde{K}_{T}+\int_{0}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s \mid \mathcal{F}_{t}\right\}-\tilde{N}_{t}
$$

So we define the density predictable process \tilde{Z} by Itô's martingale representation $\tilde{M}_{t}-\tilde{M}_{0}=\int_{0}^{t} \tilde{Z}_{s} \cdot d B_{s}$, so that

$$
\tilde{Y}_{t}=\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+\tilde{K}_{T}^{o}-\tilde{K}_{t}^{o}-\int_{t}^{T} \tilde{Z}_{s} . d B_{s}
$$

The mapping $\mathfrak{L}:(Y, Z, K) \rightarrow(\tilde{Y}, \tilde{Z}, \tilde{K})$ is thus well defined.

Proposition 1.

If (Y, Z, K) is a fixed point of \mathfrak{L}, then (Y, Z, K) is a solution the reflected BSDE (7)-(8).

Proof. Suppose (Y, Z, K) is a fixed point of the non-linear mapping \mathfrak{L}, so that

$$
\begin{aligned}
& M_{t}=\mathbb{E}\left\{\xi+\int_{0}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+K_{T}-K_{t} \mid \mathcal{F}_{t}\right\}+K_{t}^{o}, \\
& Y_{t}=\mathbb{E}\left\{\xi+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right) d s+K_{T}-K_{t} \mid \mathcal{F}_{t}\right\} \\
& K_{t}= \\
& \max \left[0, \max _{0 \leq s \leq T}\left\{-\left(\xi+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}^{b}\right) d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right\}\right. \\
& \\
& -\max \left[0, \max _{t \leq s \leq T}\left\{-\left(\xi+\int_{s}^{T} f\left(r, Y_{r}, Z_{r}, K_{r}^{b}\right) d r-S_{s}-\int_{s}^{T} Z_{r} d B_{r}\right)\right.\right.
\end{aligned}
$$

Then $Y_{T}=\xi$ and

$$
Y_{t}=M_{t}-K_{t}^{o}-\int_{0}^{t} f\left(s, Y_{s}, Z_{s}, K_{r}^{b}\right) d s
$$

so that

$$
\xi-Y_{t}=\int_{t}^{T} Z_{s} d B_{s}-\left(K_{T}^{o}-K_{t}^{o}\right)-\int_{t}^{T} f\left(s, Y_{s}, Z_{s}, K_{r}^{b}\right) d s
$$

According to the uniqueness of the Skorohod's equation, it follows that $K^{o}=K$. therefore K is adapted, and $K=K^{b}=K^{o}$. That completes the proof.

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Estimates

Let us prove the following key a priori estimate about \mathfrak{L}. Let $(\tilde{Y}, \tilde{Z}, \tilde{K})=\mathfrak{L}(Y, Z, K)$ and $\left(\tilde{Y}^{\prime}, \tilde{Z}^{\prime}, \tilde{K}^{\prime}\right)=\mathfrak{L}\left(Y^{\prime}, Z^{\prime}, K^{\prime}\right)$. Let $D_{t}=e^{\alpha t}\left|Y_{t}-Y_{t}^{\prime}\right|^{2}$ and $\tilde{D}_{t}=e^{\alpha t}\left|\tilde{Y}_{t}-\tilde{Y}_{t}^{\prime}\right|^{2}$.

Proposition 2.

Suppose f satisfies the assumption of f. Then for any $\alpha \geq 0$, $\varepsilon>0$ and $\varepsilon^{\prime}>0$ we have

$$
\begin{align*}
\mathbb{E}\left(\tilde{D}_{0}\right) \leq & -\left(\alpha-\varepsilon C_{1}-\varepsilon^{\prime} C_{2}\right)\left\|\tilde{Y}-\tilde{Y}^{\prime}\right\|_{\alpha}^{2}-\left\|\tilde{Z}-\tilde{Z}^{\prime}\right\|_{\alpha}^{2} \\
& +\frac{2 C_{1}}{\varepsilon}\left(\left\|Y-Y^{\prime}\right\|_{\alpha}^{2}+\left\|Z-Z^{\prime}\right\|_{\alpha}^{2}\right) \\
& +\frac{2 C_{2}}{\varepsilon^{\prime}}\left\|K^{b}-K^{\prime b}\right\|_{\alpha}^{2} \tag{12}
\end{align*}
$$

where $\left\|\tilde{Y}-\tilde{Y}^{\prime}\right\|_{\alpha}^{2}=\int_{0}^{T} e^{\alpha t}\left|\tilde{Y}_{t}-\tilde{Y}_{t}^{\prime}\right|^{2} d t$.

Proof. By Itô formulae, and the fact that for an optional process φ

$$
\mathbb{E} \int_{t}^{T} \varphi_{s} d\left(\tilde{K}_{s}^{o}-\tilde{K}_{s}^{\prime o}\right)=\mathbb{E} \int_{t}^{T} \varphi_{s} d\left(\tilde{K}_{s}-\tilde{K}_{s}^{\prime}\right)
$$

taking expectation to obtain

$$
\begin{aligned}
\mathbb{E} \tilde{D}_{t}= & -\alpha \int_{t}^{T} \mathbb{E}\left(\tilde{D}_{s}\right) d s-\mathbb{E} \int_{t}^{T} e^{\alpha s} d\left\langle\tilde{M}-\tilde{M}^{\prime}\right\rangle_{s} \\
& +2 \mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-\tilde{Y}_{s}^{\prime}\right) d\left(\tilde{K}_{s}-\tilde{K}_{s}^{\prime}\right) \\
& +2 \int_{t}^{T} \mathbb{E}\left\{e^{\alpha s}\left(\tilde{Y}_{s}-\tilde{Y}_{s}^{\prime}\right)\left[f\left(s, Y_{s}, Z_{s}, K_{s}^{b}\right)-f\left(s, Y_{s}^{\prime}, Z_{s}^{\prime}, K_{s}^{\prime b}\right)\right]\right\} d s,
\end{aligned}
$$

There is an important observation due to [EKPPQ],

$$
\begin{aligned}
& \mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-\tilde{Y}_{s}^{\prime}\right) d\left(\tilde{K}_{s}-\tilde{K}_{s}^{\prime}\right) \\
\leq & \mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-S_{s}\right) d \tilde{K}_{s}+\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}^{\prime}-S_{s}\right) d \tilde{K}_{s}^{\prime} .
\end{aligned}
$$

Moreover, according to Skorohod's equation, \tilde{K} increases only on $\left\{s: \hat{Y}_{s}-S_{s}=0\right\}$ so that

$$
\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\hat{Y}_{s}-S_{s}\right) d \tilde{K}_{s}=0
$$

Since \tilde{Y} is the optional projection of \hat{Y}, and \tilde{K}^{o} is the dual optional projection of \tilde{K}, therefore

$$
\begin{aligned}
\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-S_{s}\right) d \tilde{K}_{s} & =\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-S_{s}\right) d \tilde{K}_{s}^{o} \\
& =\mathbb{E}\left(\int_{t}^{T} e^{\alpha s}\left(\hat{Y}_{s}-S_{s}\right) d \tilde{K}_{s}\right)^{o}
\end{aligned}
$$

Since \tilde{K} increases only on $\left\{s: \hat{Y}_{s}-S_{s}=0\right\}$, so that $\int_{t}^{T} e^{\alpha s}\left(\hat{Y}_{s}-S_{s}\right) d \tilde{K}_{s}=0$ and therefore $\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}-S_{s}\right) d \tilde{K}_{s}=0$.
Similarly $\mathbb{E} \int_{t}^{T} e^{\alpha s}\left(\tilde{Y}_{s}^{\prime}-S_{s}\right) d \tilde{K}_{s}^{\prime}=0$.
Then result follows from Lipschitz assumption on $f_{\text {. }}$

Proposition 3.

We have

$$
\begin{aligned}
\left\|\tilde{K}-\tilde{K}^{\prime}\right\|_{\infty}^{2} \leq & \left(24 T C_{1}^{2}+4 C_{3}\right)\left(\left\|Y-Y^{\prime}\right\|_{0}^{2}+\left\|Z-Z^{\prime}\right\|_{0}^{2}\right) \\
& +24 T^{2} C_{1}^{2}\left\|K-K^{\prime}\right\|_{\infty}^{2}
\end{aligned}
$$

where $\left\|K-K^{\prime}\right\|_{\infty}^{2}=\sup _{0 \leq t \leq T} \mathbb{E}\left|K_{s}-K_{s}^{\prime}\right|^{2}$, where C_{3} is the constant appearing in the Burkholder inequality.

Lemma

Let φ, ψ be two continuous paths in \mathbb{R}^{1}. Then

$$
\left|\sup _{s \leq t} \varphi_{s}-\sup _{s \leq t} \psi_{s}\right| \leq \sup _{s \leq t}\left|\varphi_{s}-\psi_{s}\right|
$$

Existence

Theorem 1

Assume f satisfies Assumption of f, and there is a constant $C_{0}>0$ depending on C_{1} and T such that if $C_{2} \leq C_{0}$, then there is a unique solution (Y, Z, K) to the problem (7)-(8). Moreover the reversed local time satisfies (9). If $C_{2}=0$ that is the driver f does not depend on K, then there is no restriction on C_{2}.

Proof. Let $\alpha \geq 0$ and $\beta>0$ to be chosen late, and define

$$
\left\|(Y, Z, K)-\left(Y^{\prime}, Z^{\prime}, K^{\prime}\right)\right\|_{\alpha, \beta}^{2}=\left\|Y-Y^{\prime}\right\|_{\alpha}^{2}+\left\|Z-Z^{\prime}\right\|_{\alpha}^{2}+\beta\left\|K-K^{\prime}\right\|_{\infty}^{2}
$$

Let $(\tilde{Y}, \tilde{Z}, \tilde{K})=\mathfrak{L}(Y, Z, K)$ and $\left(\tilde{Y}^{\prime}, \tilde{Z}^{\prime}, \tilde{K}^{\prime}\right)=\mathfrak{L}\left(Y^{\prime}, Z^{\prime}, K^{\prime}\right)$.
Then

$$
\left\|K^{b}-K^{\prime b}\right\|_{\alpha}^{2} \leq \frac{e^{\alpha T}-1}{\alpha}\left\|K-K^{\prime}\right\|_{\infty}^{2}
$$

Then from estimation results and well chosen parameters, we get that Then there is a number $C_{0}>0$ such that if $C_{2} \leq C_{0}$,
$\left\|(\tilde{Y}, \tilde{Z}, \tilde{K})-\left(\tilde{Y}^{\prime}, \tilde{Z}^{\prime}, \tilde{K}^{\prime}\right)\right\|_{\alpha, \beta} \leq \frac{1}{\sqrt{2}}\left\|(Y, Z, K)-\left(Y^{\prime}, Z^{\prime}, K^{\prime}\right)\right\|_{\alpha, \beta}$,

Remark

Here we set C_{0} to be the solution of

$$
\frac{3 x^{2} T^{2}}{4\left(3 T C_{1}^{2}+C_{3}\right)}+x \frac{e^{\left(1+8 C_{1}^{2}+x\right) T}-1}{1+8 C_{1}^{2}+x}=\frac{1}{64\left(3 T C_{1}^{2}+C_{3}\right)},
$$

which is a candidate of the boundary of Lipschitz constant of K.

Remark

Similarly, we can change the assumption by: there is a constant C_{0} depending on C_{1} and C_{2} such that if $T \leq C_{0}$, then the existence of the solution holds.

Constructing Picard's iteration Estimates and Existence
Properties of solution

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Continuous dependence and uniqueness

Proposition 4: A priori estimate

Under the same assumptions in Theorem 1. Suppose (Y, Z, K) to be the solution of reflected $\operatorname{BSDE}(7)$, then there exists a constant C depending only on C_{1}, C_{2} and T, such that
$\mathbb{E}\left(\sup _{0 \leq t \leq T} Y_{t}^{2}+\int_{0}^{T}\left|Z_{s}\right|^{2} d s+K_{T}^{2}\right) \leq C \mathbb{E}\left(\xi^{2}+\int_{0}^{T}\left(f_{t}^{0}\right)^{2} d t+\left(\sup _{0 \leq t \leq T} S_{t}^{\epsilon}\right)^{2}\right)$

Remark

Here we may choose C_{0} such that $C_{4} C_{2}^{2} T^{2}+4 C_{2}^{2} T \leq \frac{1}{2}$ and set $\alpha=4 C_{4}$, then the result holds. It is one candidate for the estimation. Meanwhile we can also replace the boundary condition of C_{2}, by the boundary condition of T, as before.

Theorem 2.

Under the same assumptions in Theorem 1. Suppose (Y^{i}, Z^{i}, K^{i}), $(i=1,2)$ to be the solution of reflected BSDE (7) with parameters (ξ^{i}, f^{i}, S^{i}), respectively. Set

$$
\begin{aligned}
\Delta Y & =Y^{1}-Y^{2}, \triangle Z=Z^{1}-Z^{2}, \triangle K=K^{1}-K^{2} \\
\triangle \xi & =\xi^{1}-\xi^{2}, \triangle f=f^{1}-f^{2}, \triangle S=S^{1}-S^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{0 \leq t \leq T}\left|\triangle Y_{t}\right|^{2}+\int_{0}^{T}\left|\triangle Z_{s}\right|^{2} d s+\sup _{0 \leq t \leq T}\left|\triangle K_{t}\right|\right) \\
\leq & C \mathbb{E}\left(\triangle \xi^{2}+\int_{0}^{T}\left|\triangle f\left(t, Y_{t}^{1}, Z_{t}^{1}, K_{t}^{1}\right)\right|^{2} d t\right) \\
& \left.+C \Psi_{\xi^{1}, \xi^{2}, f^{1}(0), f^{2}(0), S^{1}, S^{2}, T}^{\frac{1}{2}}\left[\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|\triangle S_{t}\right|\right)^{2}\right]\right]^{\frac{1}{2}}
\end{aligned}
$$

Optimal stopping representation

Proposition 3.

Let (Y, Z, K) be the solution of reflected BSDE with resistance, then

$$
Y_{t}=e s s \sup _{\tau \in \mathcal{T}_{t}} E\left[\int_{t}^{\tau} f\left(s, Y_{s}, Z_{s}, K_{s}\right) d s+S_{\tau} 1_{\{\tau<T\}}+\xi 1_{\{\tau=T\}} \mid \mathcal{F}_{t}\right]
$$

where \mathcal{T}_{t} is be the set of all stopping times valued in $[t, T]$.
The prove is same as in paper [EKPPQ].

Comparison Theorem

Consider $\left(Y^{i}, Z^{i}, K^{i}\right), i=1,2$, to satisfy

$$
\begin{aligned}
Y_{t}^{i} & =\xi^{i}+\int_{t}^{T} f^{i}\left(s, Y_{s}^{i}, Z_{s}^{i}, K_{s}^{i}\right) d s+K_{T}^{i}-K_{t}^{i}-\int_{t}^{T} Z_{s}^{i} d B_{s} \\
Y_{t}^{i} & \geq S_{t}^{i}, \quad \int_{0}^{T}\left(Y_{s}^{i}-S_{s}^{i}\right) d K_{s}^{i}=0 .
\end{aligned}
$$

Assumption for comparison

$$
\xi^{1} \leq \xi^{2}, \quad f^{1}(t, y, z, k) \leq f^{2}(t, y, z, k), \quad S_{t}^{1} \leq S_{t}^{2}
$$

Proposition 5.

If $f^{1}(t, y, z, k)$ is decreasing in k and $f^{2}(t, y, z, k)$ is increasing in k, with $f^{1}(t, y, z, 0) \leq f^{2}(t, y, z, 0)$, then $Y_{t}^{1} \leq Y_{t}^{2}$.

Compare with classic reflected BSDE

Proposition 6.

If $f^{1}(t, y, z, k)$ is decreasing in k, and

$$
f^{1}(t, y, z, 0) \leq f^{2}(t, y, z)
$$

then $Y_{t}^{1} \leq Y_{t}^{2}$. Here $\left(Y^{2}, Z^{2}, K^{2}\right)$ is the solution of reflected BSDE without resistence.

Proposition 7.

If $f^{2}(t, y, z, k)$ is increasing in k, and

$$
f^{1}(t, y, z) \leq f^{2}(t, y, z, 0)
$$

then $Y_{t}^{1} \leq Y_{t}^{2}$. Here $\left(Y^{1}, Z^{1}, K^{1}\right)$ is the solution of reflected BSDE without resistence.

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Skorohod equation in multi-dimensional case

Definition. (Skorohod solution)

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ be a (continuous) path with $f_{0} \in \bar{D}$. A pair (g, l) is a solution to the Skorohod problem $S(f ; D)$ if
(i) $g: \mathbb{R}_{+} \rightarrow \bar{D}$ is a path in \bar{D};
(ii) $l: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nondecreasing and increases only when $g_{t} \in \partial D$:

$$
l_{t}=\int_{0}^{t} 1_{\partial D}\left(g_{s}\right) d l_{s}
$$

(iii) the Skorohod equation holds:

$$
g_{t}=f_{t}+\int_{0}^{t} n\left(g_{s}\right) d l_{s}
$$

We have the following results (see Lions and Sznitman(84) and Theorem 2.5 and Remark 3 in Hsu thesis).

Theorem

Let D be a domain in \mathbb{R}^{d} with C^{1} boundary and f a continuous path in \mathbb{R}^{d} such that $f_{0} \in \bar{D}$. Then there exists a solution to the Skorohod problem $S(f ; D)$. The solution is unique if D has a C^{2} boundary. Furthermore, the moduli of continuity of f and g satisfy

$$
\Delta_{s}(\sigma ; f) \leq C \Delta_{s}(\sigma ; f)
$$

where $\Delta_{s}(\sigma ; f)=\sup \left\{\left\|f_{a}-f_{b}\right\|: a, b \in[0, s+\sigma],|a-b| \leq \sigma\right\}$. The constant C depends on the domain D and the bounds of s and σ, but not on φ.

Remark

The inequality between the moduli of continuity of f and g says that g is no less continuous than f.

Outline

(1) BSDE and Reflected BSDE

- BSDE and Reflected BSDE
- Variant Reflected BSDE
- Local time and reflected local time
(2) Reflected BSDE with resistance
- Constructing Picard's iteration
- Estimates and Existence
- Properties of solution
(3) Reflected BSDE in multi-dimensional case
- Skorohod equation in multi-dimensional case
- Uniqueness and Some Existence

Reflected BSDE in multi-dimension on C^{2} domain (joint work with Elton Hsu)

By solution of a BSDE on a bounded domain D with reflecting boundary condition we mean a triple (Y, Z, K) such that $Y_{t} \in \bar{D}$

$$
Y_{t}=Y_{T}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} n\left(Y_{s}\right) d K_{s}-\int_{t}^{T} Z_{s} d B_{s}
$$

And the increasing process K increases only when Y is at the boundary, i.e.,

$$
K_{t}=\int_{0}^{t} I_{\partial D}\left(Y_{s}\right) d K_{s}
$$

Let $X_{t}=Y_{T-t}, L_{t}=K_{T}-K_{T-t}$, and
$F(Y, Z)_{t}=Y_{T}+\int_{T-t}^{t} f_{s} d s-\int_{T-t}^{T} Z_{s} d B_{s}$, then

$$
X_{t}=F(Y, Z)_{t}+\int_{0}^{t} n\left(X_{s}\right) d L_{s}
$$

so (X, L) is the solution of the Skorohod problem $S(F(Y, Z) ; D)$.

Theorem

The reflected BSDE on D, which has C^{2} boundary, has at most one solution $(Y, Z, K) \in \in S_{d}^{2}(0, T) \times H_{d \times n}^{2}(0, T) \times F V_{d}^{2}(0, T)$.

Existence.

- D is convex, existence holds by Skorohod equation and Picard iteration. ([Gegoux-Petit\&Pardoux] with penalization method)
- D is non-convex, the solution may not exist.

Reference

[1] Peter Bank and Nicole El Karoui, A stochastic representation theorem with applications to optimization and obstacle problems, Ann. Probab. 32 (2004), no. 1B, 1030-1067.
[2] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab. 25 (1997), no. 2, 702-737.
[3] S. W. He, J. G. Wang and J. A. Yan, Semimartingales and Stochastic Calculus, CRC Press and Science Press, 1992. [4] Jin Ma and Yusun Wang, On variant reflected backward SDEs, with applications, J. Appl. Math. Stoch. Anal. (2009), Art. ID 854768, 26.

Thanks for your attention! Q \& A

